Send to

Choose Destination
J Gastrointest Surg. 2009 Oct;13(10):1762-72. doi: 10.1007/s11605-009-0912-9. Epub 2009 May 12.

Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism.

Author information

Department of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, USA.



Gastric bypass results in the rapid resolution of type 2 diabetes. No causal evidence exists to link specific gut hormone changes with improvements in glucose homeostasis post-operatively. We hypothesized that surgical augmentation of the glucoregulatory factor GLP-1 would improve glucose tolerance in diabetic GK rats. We compared two procedures that increase distal small bowel stimulation, ileal interposition (IT), and duodenal-jejunal exclusion (DJE).


DJE, IT, DJE Sham, or IT Sham were performed in GK rats. Glucose tolerance was tested at 4 and 6 weeks, the latter with and without Exendin-[9-39], a GLP-1 receptor antagonist. Small bowel segments were harvested for GLP-1 protein content 2 weeks after DJE or Sham surgery.


Despite similar weight profiles, a significant improvement in the OGTT was noted at 4 weeks after DJE and IT. Plasma GLP-1 levels were significantly elevated after DJE and IT. Intestinal GLP-1 was increased in the mid-jejunum and ileum after DJE. Exendin-[9-39] abolished the improvement in glucose tolerance after DJE.


DJE increased GLP-1 secretion and improved glucose tolerance, an effect that was reversed by GLP-1 receptor antagonism. This study provides direct evidence that improvement of glucose tolerance following a gastric bypass-like surgery is mediated by enhanced GLP-1 action.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center