Send to

Choose Destination
J Cardiovasc Pharmacol. 2009 Jun;53(6):517-22. doi: 10.1097/FJC.0b013e3181a913f4.

Contribution of Na+/Ca2+ exchange current to the formation of delayed afterdepolarizations in intact rat ventricular muscle.

Author information

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.



To evaluate the role of the Na+-Ca2+ exchange current in the induction of arrhythmias during Ca2+ waves, we investigated the relationship between Ca2+ waves and delayed afterdepolarizations (DADs) and further investigated the effect of KB-R7943, an Na+-Ca2+ exchange inhibitor, on such relationship in multicellular muscle.


Force, sarcomere length, membrane potential, and [Ca2+]i dynamics were measured in 32 ventricular trabeculae from rat hearts. After the induction of Ca2+ waves by trains of electrical stimuli (400, 500, or 600 ms intervals) for 7.5 seconds, 23 Ca2+ waves in the absence of KB-R7943 and cilnidipine ([Ca2+]o = 2.3 +/- 0.2 mmol/L), 11 Ca2+ waves in the presence of 10 micromol/L KB-R7943 ([Ca2+]o = 2.5 +/- 0.5 mmol/L), and 8 Ca2+ waves in the presence of 1 micromol/L cilnidipine ([Ca]o = 4.1 +/- 0.3 mmol/L) were measured at a sarcomere length of 2.1 microm (23.9 +/- 0.8 degrees C).


The amplitude of DADs correlated with the velocity (r = 0.90) and the amplitude (r = 0.90) of Ca2+ waves. The amplitude of DADs was significantly decreased to approximately 40% of the initial value by 10 micromol/L KB-R7943.


These results suggest that the velocity and the amplitude of Ca2+ waves determine the formation of DADs principally through the activation of the Na+-Ca2+ exchange current, thereby inducing triggered arrhythmias in multicellular ventricular muscle.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center