Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2009 Aug;29(15):4325-39. doi: 10.1128/MCB.01776-08. Epub 2009 Jun 1.

Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis.

Author information

  • 1Division of Respiratory Medicine, City Hospital, University of Nottingham, Hucknall Road, Nottingham, United Kingdom.


Diminished cyclooxygenase 2 (COX-2) expression in fibroblasts, with a resultant defect in the production of the antifibrotic mediator prostaglandin E(2), plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Here, we have characterized the molecular mechanism. We found that COX-2 mRNA levels in fibroblasts from patients with IPF (F-IPF) were significantly lower than those in fibroblasts from nonfibrotic lungs (F-NL) after transforming growth factor beta1 and interleukin-1beta treatment but that COX-2 mRNA degradation rates were similar, suggesting defective transcription. A reporter gene assay showed that there were no clear differences between F-IPF and F-NL in transcription factor involvement and activation in COX-2 gene transcription. However, a chromatin immunoprecipitation assay revealed that transcription factor binding to the COX-2 promoter in F-IPF was reduced compared to that in F-NL, an effect that was dynamically linked to reduced histone H3 and H4 acetylation due to decreased recruitment of histone acetyltransferases (HATs) and increased recruitment of transcriptional corepressor complexes to the COX-2 promoter. The treatment of F-IPF with histone deacetylase (HDAC) inhibitors together with cytokines increased histone H3 and H4 acetylation. Both HDAC inhibitors and the overexpression of HATs restored cytokine-induced COX-2 mRNA and protein expression in F-IPF. The results demonstrate that epigenetic abnormality in the form of histone hypoacetylation is responsible for diminished COX-2 expression in IPF.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center