Format

Send to

Choose Destination
Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1164-71. doi: 10.1161/ATVBAHA.109.187146. Epub 2009 May 28.

Resveratrol improves endothelial function: role of TNF{alpha} and vascular oxidative stress.

Author information

1
Departments of Internal Medicine, Medical Pharmacology & Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.

Abstract

OBJECTIVE:

Oxidative stress plays an important role in type 2 diabetes-related endothelial dysfunction. We hypothesized that resveratrol protects against oxidative stress-induced endothelial dysfunction in aortas of diabetic mice by inhibiting tumor necrosis factor alpha (TNFalpha)-induced activation of NAD(P)H oxidase and preserving phosphorylation of endothelial nitric oxide synthase (eNOS).

METHODS AND RESULTS:

We examined endothelial-dependent vasorelaxation to acetylcholine (ACh) in diabetic mice (Lepr(db)) and normal controls (m Lepr(db)). Relaxation to ACh was blunted in Lepr(db) compared with m Lepr(db), whereas endothelial-independent vasorelaxation to sodium nitroprusside (SNP) was comparable. Resveratrol improved ACh-induced vasorelaxation in Lepr(db) without affecting dilator response to SNP. Impaired relaxation to ACh in Lepr(db) was partially reversed by incubating the vessels with NAD(P)H oxidase inhibitor apocynin and a membrane-permeable superoxide dismutase mimetic TEMPOL. Dihydroethidium (DHE) staining showed an elevated superoxide (O(2)(.-)) production in Lepr(db), whereas both resveratrol and apocynin significantly reduced O(2)(.-) signal. Resveratrol increased nitrite/nitrate levels and eNOS (Ser1177) phosphorylation, and attenuated H(2)O(2) production and nitrotyrosine (N-Tyr) content in Lepr(db) aortas. Furthermore, resveratrol attenuated the mRNA and protein expression of TNFalpha. Genetic deletion of TNFalpha in diabetic mice (db(TNF-)/db(TNF-)) was associated with a reduced NAD(P)H oxidase activity and vascular O(2)(.-) production and an increased eNOS (Ser1177) phosphorylation, suggesting that TNFalpha plays a pivotal role in aortic dysfunction in diabetes by inducing oxidative stress and reducing NO bioavailability.

CONCLUSIONS:

Resveratrol restored endothelial function in type 2 diabetes by inhibiting TNFalpha-induced activation of NAD(P)H oxidase and preserving eNOS phosphorylation, suggesting the potential for new treatment approaches to promote vascular health in metabolic diseases.

PMID:
19478208
PMCID:
PMC2761384
DOI:
10.1161/ATVBAHA.109.187146
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center