Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):9974-8.

The vinyl chloride DNA derivative N2,3-ethenoguanine produces G----A transitions in Escherichia coli.

Author information

1
Department of Pathology, University of Washington, Seattle 98195.

Abstract

Vinyl chloride is a known human and rodent carcinogen that forms several cyclic base derivatives in DNA. The mutagenic potential of these derivatives has been examined in vitro but not in vivo. One of these derivatives, N2,3-ethenoguanine (epsilon G), is known to base pair with both cytosine and thymine during in vitro DNA synthesis, which would result in G----A transitions. To determine the base pairing specificity of this labile guanine derivative in Escherichia coli, we have developed a genetic reversion assay for guanine derivatives. The assay utilizes DNA polymerase-mediated analogue insertion into a bacteriophage vector, M13G*1, which detects all single-base substitutions at position 141 of the lacZ alpha gene by change in plaque color. After the insertion of a single epsilon G opposite the template cytosine at position 141 by use of epsilon dGTP and DNA polymerase and further extension with all four normal dNTPs, the DNA was transfected into E. coli. Transfection of M13G*1 containing epsilon G at the target site yielded 135 mutants among 26,500 plaques, 134 of which represented G----A transitions. The uncorrected mutation frequency was 0.5%, as compared with the control value, approximately 0.02%; when corrected for epsilon G content and penetrance, the calculated mutagenic potential of epsilon G (mutations/analogue) was about 13%. We thus conclude that epsilon G specifically induces G----A transitions during DNA replication in E. coli. The M13G*1 assay may permit the testing of other labile guanine derivatives not otherwise amenable to mutagenesis studies.

PMID:
1946466
PMCID:
PMC52849
DOI:
10.1073/pnas.88.22.9974
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center