Send to

Choose Destination
Metab Eng. 2009 Jul-Sep;11(4-5):262-73. doi: 10.1016/j.ymben.2009.05.003. Epub 2009 May 21.

Engineering alternative butanol production platforms in heterologous bacteria.

Author information

Department of Chemical Engineering, 77 Massachusetts Institute of Technology, Cambridge, MA 02139, USA.


Alternative microbial hosts have been engineered as biocatalysts for butanol biosynthesis. The butanol synthetic pathway of Clostridium acetobutylicum was first re-constructed in Escherichia coli to establish a baseline for comparison to other hosts. Whereas polycistronic expression of the pathway genes resulted in the production of 34 mg/L butanol, individual expression of pathway genes elevated titers to 200 mg/L. Improved titers were achieved by co-expression of Saccharomyces cerevisiae formate dehydrogenase while overexpression of E. coli glyceraldehyde 3-phosphate dehydrogenase to elevate glycolytic flux improved titers to 580 mg/L. Pseudomonas putida and Bacillus subtilis were also explored as alternative production hosts. Polycistronic expression of butanol biosynthetic genes yielded butanol titers of 120 and 24 mg/L from P. putida and B. subtilis, respectively. Production in the obligate aerobe P. putida was dependent upon expression of bcd-etfAB. These results demonstrate the potential of engineering butanol biosynthesis in a variety of heterologous microorganisms, including those cultivated aerobically.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center