Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9823-7.

Excess nonsynonymous substitution of shared polymorphic sites among self-incompatibility alleles of Solanaceae.

Author information

  • 1Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park 16802.


The function of the self-incompatibility locus (S locus) of many plant species dictates that natural selection will favor high levels of protein diversity. Pairwise sequence comparisons between S alleles from four species of Solanaceae reveal remarkably high sequence diversity and evidence for shared polymorphism. The level of amino acid constraint was found to be significantly heterogeneous among different regions of the gene, with some regions being highly constrained and others appearing to be virtually unconstrained. In some regions of the protein, there was an excess of nonsynonymous over synonymous substitution, consistent with the strong diversifying selection that must operate on this locus. These hypervariable regions are candidates for the sites that determine functional allelic identity. Simple contingency table tests show that sites that have polymorphism shared between species have more nonsynonymous substitution than polymorphic sites that do not exhibit shared polymorphism. This is consistent with the idea that adaptive evolution favoring amino acid replacement is occurring at sites with shared polymorphism. Tests of clustered polymorphism reveal that an unusually low rate of recombination must be occurring in this locus, allowing very ancient alleles to preserve their identity.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center