Format

Send to

Choose Destination
See comment in PubMed Commons below
Dalton Trans. 2009 Feb 28;(8):1267-82.

Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control.

Author information

1
Department of Materials Science & Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-744, Korea.

Abstract

Phosphorescent Ir(III) complexes attract enormous attention because they allow highly efficient electrophosphorescence. In pursuing the development of Ir(III) complexes during the last decade, significant progress has been made in terms of the colour-tunability, thermal- and photo-stability, phase homogeneity, and phosphorescence efficiency. By far, extensive synthetic efforts have been focused on the molecular design of ligands to achieve a wide range of phosphorescence colour that is compatible with organic light-emitting device (OLED) applications. In contrast, less has been known about a collective structure-property relationship for phosphorescence quantum efficiency. In fact, a few rule-of-thumbs for high phosphorescence quantum efficiency have been occasionally reported, but a collective rationale is yet to be investigated. In this article, we provide a comprehensive review of 8 different methods reported so far to achieve high phosphorescence quantum efficiency from Ir(III) complexes. The methods included herein are limited to the cases of intramolecular controls, and thus are discussed in terms of variations in ligand structures: (1) geometric isomer control, (2) rigid structure and restricted intramolecular motion, (3) larger mixing of 1MLCT and 3LC states, (4) de-stabilizing a thermally accessible non-emissive state, (5) introducing dendrimer structures, (6) control in substituents of ligands, (7) confining the phosphorescent region of a mixed ligand Ir(III) complex and (8) sensitized phosphorescence by using attached energy donors. Each method is closely related to intramolecular excited state interactions, which strongly affect radiative or non-radiative transitions. A comprehensive understanding of these methods leads us to conclude that the modulation in ligand structures has a profound effect on both the phosphorescence colour and phosphorescence quantum efficiency. Thus, the judicious selection of ligand structures and their chelate disposition should be considered before synthesis. We expect that the guidelines for attaining a high phosphorescence efficiency, summarized in this Perspective, would be helpful in developing highly phosphorescent Ir(III) complexes.

PMID:
19462644
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center