Send to

Choose Destination
Int J Biochem Cell Biol. 2009 Oct;41(10):2081-8. doi: 10.1016/j.biocel.2009.05.009. Epub 2009 May 19.

Novel antibody-based strategies for the rapid diagnosis of mitochondrial disease and dysfunction.

Author information

MitoSciences, Inc., 1850 Millrace Dr., Eugene, OR 97403, USA.


We are developing rapid immunoassays to measure the protein levels, enzymatic activities and post-translational modifications of mitochondrial proteins. These assays can be arrayed in multi-analyte panels for biomarker discovery and they can also be used individually at point of care where the level or activity of a small number proteins or even a single protein is highly informative. For example, we have characterized OXPHOS deficits associated with lipoatrophy, an adverse metabolic side-effect of anti-retroviral therapy, and have shown that OXPHOS deficits observed in vitro are also exhibited not only in clinically affected tissue (peripheral fat) but also in more easily accessible tissue (peripheral blood mononucleated cells). Similarly, we have shown that a small set of assays can be used to identify almost all patients with genetic deficits in OXPHOS complexes I or IV, the most common cause of inherited mitochondrial disease. Finally, we recently reported that Friedreich's Ataxia (FA) patients and carriers can be identified on the basis of a simple dipstick test to measure levels of a single protein, frataxin, an iron regulatory protein whose disrupted expression is the proximal cause of neurodegeneration in FA. Because each of these tests can be performed in an extremely simple, rapid dipstick format using non-invasive samples such as cheek swabs and fingerprick blood, they have potential for use as point of care diagnostics for mitochondrial disease and as front-line screening tools to help guide drug therapies and minimize adverse off-target drug effects.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center