Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Sci. 2009 Aug;100(8):1374-81. doi: 10.1111/j.1349-7006.2009.01196.x. Epub 2009 May 19.

Ubiquitin-mediated control of oncogene and tumor suppressor gene products.

Author information

1
Department of Biochemistry 1, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.

Abstract

Cellular levels of products from both oncogenes and tumor suppressor genes in normal cells need to be critically regulated to avoid malignant transformation. These products are often controlled by the ubiquitin proteasome pathway, the specific degradation mechanism in the cell. E3 ubiquitin ligases polyubiquitylate their specific substrates by collaborating with E1 and E2, and then the modified substrates are degraded in the proteasome. Mdm2 targets p53 and retinoblastoma protein, two major tumor suppressor gene products, for ubiquitin-dependent degradation. SCF(Skp2) targets other tumor suppressor gene products and CDK inhibitors such as p130, Tob1, p27(Kip1), p57(Kip2), and p21(Cip1). Therefore, both E3 ligases act like oncogene products. In contrast, degradation of several oncogene products, such as Cyclin E, Notch, c-Myc, c-Jun, and c-Myb, are mediated by SCF(Fbw7). Fbw7 is often deleted or mutated in human cancers and acts like a tumor suppressor. As well as growth factor receptors and signal transduction regulators, DNA repair-related proteins are also regulated via the ubiquitin-proteasome pathway mediated by their specific E3 ligases. The stabilization of oncogene products and enhanced degradation of tumor suppressor gene products or DNA repair proteins might be associated with carcinogenesis and malignant progression, due to defects or the abnormal expression of their E3 ligases.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center