Format

Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2009 Jun 7;9(11):1524-33. doi: 10.1039/b900139e. Epub 2009 Apr 6.

An air-bubble-actuated micropump for on-chip blood transportation.

Author information

1
Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan 300, ROC.

Abstract

A novel electrolysis-based micropump using air bubbles to achieve indirect actuation is proposed and demonstrated. Compared with other electrochemical micropumps, our micropump can drive microfluids without inducing the pH value variation in the main channel and the choking/sticking phenomena of electrolytic bubbles. It is promising for biomedical applications, especially for blood transportation. Our proposed on-chip electrolysis-bubble actuator with the features of room temperature operation, low driving voltage, low power consumption and large actuation force not only can minimize the possibility of cell-damage but also may enable portable and implantable lab-on-a-chip microsystems. Utilizing our proposed hydrophobic trapeziform pattern located at the junction of the T-shaped microchannel, the micropump makes the pumped fluid in the main channel be isolated from the electrolytic bubbles. It can be used for a variety of applications without the constraints on the pumped liquid. Experimental results show that the liquid displacement and the pumping rate could be easily and accurately controlled via the signal of a two-phase peristaltic sequence and the periodic generation of electrolytic bubbles. With an applied voltage of 2.5 V, the maximum pumping rate for DI water and whole blood were 121 nl min(-1) and 88 nl min(-1), respectively, with a channel cross section of 100 x 50 microm. Maximum back-pressure of 16 kPa and 11 kPa for DI water and whole blood, respectively, were achieved in our present prototype chips.

PMID:
19458858
DOI:
10.1039/b900139e
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center