Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2009 Jul;110(1):363-77. doi: 10.1111/j.1471-4159.2009.06140.x. Epub 2009 May 3.

Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine.

Author information

1
Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA.

Abstract

Behavioral sensitization is an animal model for aspects of cocaine addiction. Cocaine-sensitized rats exhibit increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc) which may in turn enhance drug seeking. To identify signaling pathways contributing to AMPAR up-regulation, we measured AMPAR surface expression and signaling pathway activation in the NAc of cocaine-sensitized rats, cocaine-exposed rats that failed to sensitize and saline controls on withdrawal days (WD) 1, 7, and 21. We focused on calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated protein kinase (ERK), and protein kinase A (PKA). In sensitized rats, AMPAR surface expression was elevated on WD7 and WD21 but not WD1. ERK2 activation followed a parallel time-course, suggesting a role in AMPAR up-regulation. Both sensitized and non-sensitized rats exhibited CaMKII activation on WD7, suggesting that CaMKII activation is not sufficient for AMPAR up-regulation. PKA phosphorylation, measured using an antibody recognizing phosphorylated PKA substrates, increased gradually over withdrawal in sensitized rats, from below control levels on WD1 to significantly greater than controls on WD21. Using proteomics, novel sensitization-related PKA substrates were identified, including two structural proteins (CRMP-2 and alpha-tubulin) that we speculate may link PKA signaling to previously reported dendritic remodeling in NAc neurons of cocaine-sensitized rats.

PMID:
19457111
PMCID:
PMC2856133
DOI:
10.1111/j.1471-4159.2009.06140.x
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center