Send to

Choose Destination
J Neurochem. 2009 Aug;110(3):912-23. doi: 10.1111/j.1471-4159.2009.06176.x. Epub 2009 May 18.

Cellular prion protein coupling to TACE-dependent TNF-alpha shedding controls neurotransmitter catabolism in neuronal cells.

Author information

Laboratoire Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France.


Despite considerable efforts to unravel the role of cellular prion protein (PrP(C)) in neuronal functions, the mechanisms by which PrP(C) takes part in the homeostasis of a defined neuronal phenotype remain poorly characterized. By taking advantage of a neuroectodermal cell line (1C11) endowed with the capacity to differentiate into serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) neurons, we assessed the contribution of PrP(C) to bioaminergic cell functions. We established that in 1C11-derived neuronal cells antibody-mediated PrP(C) ligation triggered tumor necrosis factor (TNF)-alpha release, through recruitment of the metalloproteinase TNF-alpha converting enzyme (TACE). TNF-alpha shed in response to PrP(C) acts as a second message signal, eliciting serotonin (5-HT) or norepinephrine (NE) degradation in 1C11(5-HT) or 1C11(NE) cells, respectively. Our data thus introduced TNF-alpha as a PrP(C)-dependent modulator of neuronal metabolism. Of note, we previously reported on a control of neurotransmitter catabolism by 5-HT(2B) or alpha(1D) autoreceptors in 1C11 bioaminergic neurons, via the same TACE/TNF-alpha pathway (Ann. N Y Acad. Sci. 1091, 123). Here, we show that combined stimulation of PrP(C) and these two bioaminergic receptors add their effects on neurotransmitter degradation. Overall, these observations unveil a novel contribution of PrP(C) to the control of neuronal functions and may have implications regarding dysfunction of the bioaminergic systems in prion diseases.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center