Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2009 May 15;34(3):311-21. doi: 10.1016/j.molcel.2009.04.008.

Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage.

Author information

1
Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD 21218, USA.

Abstract

Chromosome segregation and the repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister chromatid cohesion. Cohesion requires both a chromatin binding step and a subsequent tethering step called cohesion generation. Here we provide insight into how cohesion generation is restricted to S phase but can be activated in G2/M by a DSB in budding yeast. We show that Wpl1p inhibits cohesion in G2/M. A DSB counteracts Wpl1p and stimulates cohesion generation by first inducing the phosphorylation of the Mcd1p subunit of cohesin. This phosphorylation activates Eco1p-dependent acetylation of Mcd1p, which in turn antagonizes Wpl1p. Previous studies show that Eco1p antagonizes Wpl1p in S phase by acetylating the Smc3p subunit of cohesin. We show that Mcd1p and Smc3p acetylation antagonize Wpl1p only in their proper context. Thus, Eco1p antagonizes Wpl1p in distinct ways to modulate cohesion generation during the cell cycle and after DNA damage.

PMID:
19450529
PMCID:
PMC2737744
DOI:
10.1016/j.molcel.2009.04.008
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center