Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2009 Oct;84(5):927-36. doi: 10.1007/s00253-009-2025-5. Epub 2009 May 14.

Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

Author information

1
Institute for Biotechnology and BioEngineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.

Abstract

The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

PMID:
19440702
DOI:
10.1007/s00253-009-2025-5
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center