Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Environ Res Public Health. 2009 Feb;6(2):643-53. doi: 10.3390/ijerph6020643. Epub 2009 Feb 12.

Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells.

Author information

1
Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, CSET, Jackson State University, Jackson, MS, USA. anita.k.patlolla@jsums.edu

Abstract

Chromium is a widespread industrial waste. The soluble hexavalent chromium Cr (VI) is an environmental contaminant widely recognized to act as a carcinogen, mutagen and teratogen towards humans and animals. The fate of chromium in the environment is dependent on its oxidation state. Hexavalent chromium primarily enters the cells and undergoes metabolic reduction to trivalent chromium, resulting in the formation of reactive oxygen species together with oxidative tissue damage and a cascade of cellular events. However, the results from in vitro studies are often conflicting. The aim of this study was to develop a model to establish relationships between cytotoxicity, genotoxicity and oxidative stress, in human liver carcinoma [HepG2] cells exposed to potassium dichromate. HepG2 cells were cultured following standard protocols and exposed to various concentrations [0-50 microM] of potassium dichromate [K2Cr2O7]. Following exposure to the toxic metal, the MTT assay was performed to assess the cytotoxicity, the thiobarbituric acid test to evaluate the degree of lipid peroxidation as an indicator of oxidative stress and the alkaline comet assay was used to assess DNA damage to study genotoxicity. The results of the study indicated that potassium dichromate was cytotoxic to HepG2 cells. The LD(50) values of 8.83 +/- 0.89 microg/ml, 6.76 +/- 0.99 microg/ml, respectively, for cell mortality at 24 and 48 hrs were observed, indicating a dose- and time-dependent response with regard to the cytotoxic effects of potassium dichromate. A statistically significant increase in the concentration of malondialdehyde [MDA], an indicator of lipid peroxidation, was recorded in exposed cells [15.9 - 69.9 microM] compared to control [13 microM]. Similarly, a strong dose-response relationship (p<0.05) was also obtained with respect to potassium dichromate induced DNA damage (comet assay) in HepG2 cells exposed [3.16 +/- 0.70 - 24.84 +/- 1.86 microns - mean comet tail length]; [12.4 +/- 1.45% - 76 +/- 1.49%-% tail DNA] to potassium dichromate than control [3.07 +/- 0.26 microns--mean comet tail length]; [2.69 + 0.19%-% Tail DNA], respectively. The results demonstrated that potassium dichromate was highly cytotoxic to HepG2 cells, and its cytotoxicity seems to be mediated by oxidative stress and DNA damage.

KEYWORDS:

DNA damage; HepG2 cells; cytotoxicity; lipid peroxidation; malondialdehyde; potassium dichromate

PMID:
19440407
PMCID:
PMC2672371
DOI:
10.3390/ijerph6020643
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
    Loading ...
    Support Center