Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8677-82. doi: 10.1073/pnas.0903632106. Epub 2009 May 13.

Mig-6 modulates uterine steroid hormone responsiveness and exhibits altered expression in endometrial disease.

Author information

1
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. jjeong@bcm.tmc.edu

Abstract

Normal endometrial function requires a balance of progesterone (P4) and estrogen (E2) effects. An imbalance caused by increased E2 action and/or decreased P4 action can result in abnormal endometrial proliferation and, ultimately, endometrial adenocarcinoma, the fourth most common cancer in women. We have identified mitogen-inducible gene 6 (Mig-6) as a downstream target of progesterone receptor (PR) and steroid receptor coactivator (SRC-1) action in the uterus. Here, we demonstrate that absence of Mig-6 in mice results in the inability of P4 to inhibit E2-induced uterine weight gain and E2-responsive target genes expression. At 5 months of age, the absence of Mig-6 results in endometrial hyperplasia. Ovariectomized Mig-6(d/d) mice exhibit this hyperplastic phenotype in the presence of E2 and P4 but not without ovarian hormone. Ovariectomized Mig-6(d/d) mice treated with E2 developed invasive endometrioid-type endometrial adenocarcinoma. Importantly, the observation that endometrial carcinomas from women have a significant reduction in MIG-6 expression provides compelling support for an important growth regulatory role for Mig-6 in the uterus of both humans and mice. This demonstrates the Mig-6 is a critical regulator of the response of the endometrium to E2 in regulating tissue homeostasis. Since Mig-6 is regulated by both PR and SRC-1, this identifies a PR, SRC-1, Mig-6 regulatory pathway that is critical in the suppression of endometrial cancer.

PMID:
19439667
PMCID:
PMC2681319
DOI:
10.1073/pnas.0903632106
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center