Format

Send to

Choose Destination
See comment in PubMed Commons below
Regen Med. 2009 May;4(3):387-95. doi: 10.2217/rme.09.2.

Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology.

Author information

1
The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine of the Keck School of Medicine at University of Southern California, 90017, USA.

Abstract

AIM:

A limitation of cell therapy for heart disease is the fact that stem cells injected directly into the myocardium are capable of entering the vasculature and migrating to remote organs. We determined whether retention of mesenchymal stem cells (MSCs) in the infarcted myocardium could be improved by implanting the cells in a collagen matrix.

METHODS:

A myocardial infarction was induced by ligation of the left anterior descending coronary artery in Fischer rats. A total of 7 days after myocardial infarction, saline (n = 12), saline plus 2 million bone marrow-derived rat MSCs labeled with isotopic colloidal nanoparticles containing europium (n = 13), collagen (n = 13) or collagen plus 2 million labeled MSCs (n = 13) were directly injected into the infarcted myocardium. Tissues from the infarcted myocardium, noninfarcted myocardium, lung, liver, spleen and kidney were sampled 4 weeks later. Distribution of grafted MSCs was quantitatively analyzed by measuring the nanoparticle radioactivity in these tissues. Cardiac function was assessed by left ventriculography.

RESULTS:

There were zero nanoparticles detected in the tissues that received saline or collagen alone into the heart. Nanoparticles were detected in the heart and remote organs in the saline plus MSC group. Labeled cells (expressed as cell number/g tissue weight) were present in three out of 13 lungs (mean of 12,724 +/- 7060 cells/g), four out of 13 livers (12,301 +/- 5924 cells/g), 11 out of 13 spleens (57,228 +/- 11,483 cells/g), zero out of 13 kidneys, 13 out of 13 infarcted myocardium (8,006,835 +/- 1,846,462 cells/g) and nine out of 13 noninfarcted myocardium (167,331 +/- 47,007 cells/g). However, compared with the saline plus MSC group, nanoparticles were detected to a lesser extent in remote organs in collagen plus MSC group. Nanoparticles were detected in two out of 13 lungs (4631 +/- 3176 cells/g; p = NS), zero out of 13 livers (0 cells/g; p <0.05 vs saline plus MSC), four out of 13 spleens (24,060 +/- 17,373 cells/g; p <0.05), zero out of 13 kidneys (p = NS) and five out of 13 noninfarcted myocardium (51,522 +/- 21,548 cells/g; p <0.05). In the collagen plus MSC group, nanoparticles were detected in 12 out of 13 infarcted myocardium (4,830,050 +/- 592,215 cells/g), which did not significantly differ from that in the saline plus MSC group (p = NS). Both saline plus MSCs and collagen alone improved left ventricular ejection fraction compared with saline treatment. However, collagen plus MSCs failed to improve cardiac function.

CONCLUSIONS:

Collagen matrix as a delivery vehicle significantly reduced the relocation of transplanted MSCs to remote organs and noninfarcted myocardium.

PMID:
19438314
PMCID:
PMC2739804
DOI:
10.2217/rme.09.2
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center