Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neural Eng. 2009 Jun;6(3):036004. doi: 10.1088/1741-2560/6/3/036004. Epub 2009 May 12.

Muscle synergies as a predictive framework for the EMG patterns of new hand postures.

Author information

1
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA. aba20@case.edu

Abstract

Synchronous muscle synergies have been suggested as a framework for dimensionality reduction in muscle coordination. Many studies have shown that synergies form a descriptive framework for a wide variety of tasks. We examined if a muscle synergy framework could accurately predict the EMG patterns associated with untrained static hand postures, in essence, if they formed a predictive framework. Hand and forearm muscle activities were recorded while subjects statically mimed 33 postures of the American Sign Language alphabet. Synergies were extracted from a subset of training postures using non-negative matrix factorization and used to predict the EMG patterns of the remaining postures. Across the subject population, as few as 11 postures could form an eight-dimensional synergy framework that allowed for at least 90% prediction of the EMG patterns of all 33 postures, including trial-to-trial variations. Synergies were quite robust despite using different postures in the training set, and also despite using a varied number of postures. Estimated synergies were categorized into those which were subject-specific and those which were general to the population. Population synergies were sparser than the subject-specific synergies, typically being dominated by a single muscle. Subject-specific synergies were more balanced in the coactivation of multiple muscles. We suggest as a result that global muscle coordination may be a combination of higher order control of robust subject-specific muscle synergies and lower order control of individuated muscles, and that this control paradigm may be useful in the control of EMG-based technologies, such as artificial limbs and functional electrical stimulation systems.

PMID:
19436081
PMCID:
PMC3151158
DOI:
10.1088/1741-2560/6/3/036004
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd. Icon for PubMed Central
    Loading ...
    Support Center