Send to

Choose Destination
J Phys Chem B. 2009 Jun 4;113(22):7794-9. doi: 10.1021/jp808671f.

Long-lived exciplex formation and delayed exciton emission in bulk heterojunction blends of silole derivative and polyfluorene copolymer: the role of morphology on exciplex formation and charge separation.

Author information

Department of Physics, Imperial College London, London SW7 2BW.


Long-lived exciplex emission is observed in blend films of poly[9,9-dioctylfluorene-co-N-(4-methoxy-phenyl)diphenylamine] (TFMO) and the soluble silole derivative 2,5-bis-(2,2-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy). The exciplex is characterized by a long-lived (approximately 40-90 ns) component in both the photoluminescence and electroluminescence spectra, which is red-shifted relative to the emission of the pristine materials. In addition to exciplex emission, delayed fluorescence from the TFMO singlet state is observed and is attributed to exciton regeneration through the interfacial exciplex state. Comparing blend films made using chlorobenzene and p-xylene solvents, we find that exciplex lifetime and exciton regeneration in the blend film are sensitive to the choice of solvent and the resulting morphology of the blend film. The exciplex emissive lifetime can be correlated to changes in photoluminescence quenching and efficiency of light-emitting diodes.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center