Format

Send to

Choose Destination
Biophys J. 1961 Jul;1(6):445-66.

Impulses and Physiological States in Theoretical Models of Nerve Membrane.

Abstract

Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of non-linear differential equations with either a stable singular point or a limit cycle. The resulting "BVP model" has two variables of state, representing excitability and refractoriness, and qualitatively resembles Bonhoeffer's theoretical model for the iron wire model of nerve. This BVP model serves as a simple representative of a class of excitable-oscillatory systems including the Hodgkin-Huxley (HH) model of the squid giant axon. The BVP phase plane can be divided into regions corresponding to the physiological states of nerve fiber (resting, active, refractory, enhanced, depressed, etc.) to form a "physiological state diagram," with the help of which many physiological phenomena can be summarized. A properly chosen projection from the 4-dimensional HH phase space onto a plane produces a similar diagram which shows the underlying relationship between the two models. Impulse trains occur in the BVP and HH models for a range of constant applied currents which make the singular point representing the resting state unstable.

PMID:
19431309
PMCID:
PMC1366333

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center