Format

Send to

Choose Destination
See comment in PubMed Commons below
J Steroid Biochem Mol Biol. 2009 Apr;114(3-5):135-43. doi: 10.1016/j.jsbmb.2009.01.015. Epub 2009 Feb 3.

Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus.

Author information

1
Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.

Abstract

Dehydroepiandrosterone (DHEA) is the most abundant steroid in humans and a multi-functional neuroactive steroid that has been implicated in a variety of biological effects in both the periphery and central nervous system. Mechanistic studies of DHEA in the periphery have emphasized its role as a prohormone and those in the brain have focused on effects exerted at cell surface receptors. Recent results demonstrated that DHEA is intrinsically androgenic. It competes with DHT for binding to androgen receptor (AR), induces AR-regulated reporter gene expression in vitro, and exogenous DHEA administration regulates gene expression in peripheral androgen-dependent tissues and LnCAP prostate cancer cells, indicating genomic effects and adding a level of complexity to functional models. The absence of information about the effect of DHEA on gene expression in the CNS is a significant gap in light of continuing clinical interest in the compound as a hormone replacement therapy in older individuals, patients with adrenal insufficiency, and as a treatment that improves sense of well-being, increases libido, relieves depressive symptoms, and serves as a neuroprotective agent. In the present study, ovariectomized CF-1 female mice, an established model for assessing CNS effects of androgens, were treated with DHEA (1mg/day), dihydrotestosterone (DHT, a potent androgen used as a positive control; 0.1mg/day) or vehicle (negative control) for 7 days. The effects of DHEA on gene expression were assessed in two regions of the CNS that are enriched in AR, hypothalamus and hippocampus, using DNA microarray, real-time RT-PCR, and immunohistochemistry. RIA of serum samples assessed treatment effects on circulating levels of major steroids. In hypothalamus, DHEA and DHT significantly up-regulated the gene expression of hypocretin (Hcrt; also called orexin), pro-melanin-concentrating hormone (Pmch), and protein kinase C delta (Prkcd), and down-regulated the expression of deleted in bladder cancer chromosome region candidate 1 (Dbccr1) and chitinase 3-like 3 (Chi3l3). Two-step real-time RT-PCR confirmed changes in the expression of three genes (Pmch, Hcrt and Prkcd) using the same RNA sample employed in the microarray experiment. Immunohistochemistry showed augmentation of prepro-hypocretin (pHcrt) neuropeptide protein expression by DHEA and DHT in hypothalamus, consistent with the localization of orexin neurons. In hippocampus, DHT down-regulated the expression of Prkcd, while DHEA did not have significant effects. RIA results supported the view that DHEA-induced effects were mediated through AR. The current study identified neurogenomic effects of DHEA treatment on a subset of genes directly implicated in the regulation of appetite, energy utilization, alertness, apoptosis, and cell survival. These changes in gene expression in the CNS represent a constellation of effects that may help explain the diverse benefits attributed to replacement therapy with DHEA. The data also provide a new level of detail regarding the genomic mechanism of action of DHEA in the CNS and strongly support a central role for the androgen receptor in the production of these effects. More broadly, the results may be clinically significant because they provide new insights into processes that appear to mediate the diverse CNS effects attributed to DHEA.

PMID:
19429443
DOI:
10.1016/j.jsbmb.2009.01.015
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center