Send to

Choose Destination
Dev Biol. 2009 Jul 15;331(2):237-49. doi: 10.1016/j.ydbio.2009.04.039. Epub 2009 May 7.

Myofibrillogenesis in the developing zebrafish heart: A functional study of tnnt2.

Author information

Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.


Various hypotheses have been proposed to explain the molecule processes of sarcomere assembly, partially due to the lack of systematic genetic studies of sarcomeric genes in an in vivo model. Towards the goal of developing zebrafish as a vertebrate model for this purpose, we characterized myofibrillogenesis in a developing zebrafish heart and went on to examine the functions of cardiac troponin T (tnnt2). We found that sarcomere assembly in zebrafish heart was initiated from a non-striated actin filament network at the perimembrane region, whereas sarcomeric myosin is independently assembled into thick filaments of variable length before integrating into the thin filament network. Compared to Z-discs that are initially aligned to form shorter periodic dots and expanded longitudinally at a later time, M-lines assemble later and have a constant length. Depletion of full-length tnnt2 disrupted the striation of thin filaments and Z-bodies, which sequentially affects the striation of thick filaments and M-lines. Conversely, truncation of a C-terminal troponin complex-binding domain did not affect the striation of these sarcomere sub-structures, but resulted in reduced cardiomyocyte size. In summary, our data indicates that zebrafish are a valuable in vivo model for studying both myofibrillogenesis and sarcomere-based cardiac diseases.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center