Send to

Choose Destination
Pediatr Pulmonol. 2009 Jun;44(6):547-58. doi: 10.1002/ppul.21011.

Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients.

Author information

Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Denmark.


The present study was undertaken to investigate the appearance and location of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung and in sputum. Samples include preserved tissues of CF patients who died due to chronic P. aeruginosa lung infection prior to the advent of intensive antibiotic therapy, explanted lungs from 3 intensively treated chronically P. aeruginosa infected CF patients and routine sputum from 77 chronically P. aeruginosa infected CF patients. All samples were investigated microscopically using hematoxylin-eosin (HE), Gram and alcian-blue stain, PNA FISH and immunofluorescence for alginate.Investigation of the preserved tissues revealed that prior to aggressive antibiotic therapy, P. aeruginosa infection and destruction of the CF lung correlated with the occurrence of mucoid (alginate) bacteria present in aggregating structures surrounded by pronounced polymorphonuclear-leukocyte (PMN) inflammation in the respiratory zone (9/9). Non-mucoid bacteria were not observed here, and rarely in the conductive zone (1/9). However, in the explanted lungs, the P. aeruginosa aggregates were also mucoid but in contrast to the autopsies, they were very rare in the respiratory zone but abundant in the sputum of the conductive zone (3/3), which also contained abundances of PMNs (3/3). Non-mucoid and planktonic P. aeruginosa were also observed here (3/3).In conclusion, the present intensive antibiotic therapy of chronic P. aeruginosa infections, at the Copenhagen CF Centre, seems to restrain but not eradicate the bacteria from the conductive zone, whereas the remaining healthy respiratory zone appears to be protected, for a long period, from massive biofilm infection. This strongly suggests that the conductive zone serves as a bacterial reservoir where the bacteria are organized in mucoid biofilms within the mucus, protected against antibiotics and host defenses.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center