Format

Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2009 Sep;23(9):3059-69. doi: 10.1096/fj.08-127530. Epub 2009 May 5.

In silico mutagenesis: a case study of the melanocortin 4 receptor.

Author information

1
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA. bromberg@rostlab.org

Abstract

The melanocortin 4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) and a key molecule in the regulation of energy homeostasis. At least 159 substitutions in the coding region of human MC4R (hMC4R) have been described experimentally; over 80 of those occur naturally, and many have been implicated in obesity. However, assessment of the presumably functionally essential residues remains incomplete. Here we have performed a complete in silico mutagenesis analysis to assess the functional essentiality of all possible nonnative point mutants in the entire hMC4R protein (332 residues). We applied SNAP, which is a method for quantifying functional consequences of single amino acid (AA) substitutions, to calculate the effects of all possible substitutions at each position in the hMC4R AA sequence. We compiled a mutability score that reflects the degree to which a particular residue is likely to be functionally important. We performed the same experiment for a paralogue human melanocortin receptor (hMC1R) and a mouse orthologue (mMC4R) in order to compare computational evaluations of highly related sequences. Three results are most salient: 1) our predictions largely agree with the available experimental annotations; 2) this analysis identified several AAs that are likely to be functionally critical, but have not yet been studied experimentally; and 3) the differential analysis of the receptors implicates a number of residues as specifically important to MC4Rs vs. other GPCRs, such as hMC1R.

PMID:
19417090
PMCID:
PMC2735358
DOI:
10.1096/fj.08-127530
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center