Send to

Choose Destination
See comment in PubMed Commons below
Cell Tissue Res. 2009 Jul;337(1):79-89. doi: 10.1007/s00441-009-0791-0. Epub 2009 May 5.

Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines.

Author information

Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.


The receptor for advanced glycation end-products (RAGE) is thought to be expressed ubiquitously as various protein isoforms. Our objective was to use Northern blotting, immunoblotting, and sensitivity to N-glycanase digestion to survey RAGE isoforms expressed in cell lines and mouse tissues in order to obtain a more comprehensive view of the RAGE expressome. Pulmonary RAGE mRNA (1.4 kb) was smaller than cell-line and tissue RAGE mRNA (6 kb-10 kb). Three anti-RAGE antibodies that recognized three distinct RAGE epitopes were used for protein studies (N-16, H-300, and alphaES). Lung expressed three predominant protein isoforms with apparent molecular masses of 45.1, 52.6, and 57.4 kDa (N-16/H-300) and four isoforms at 25.0, 46.9, 52.5, and 54.2 kDa (alphaES). These isoforms were expressed exclusively in lung. Heart, ileum, and kidney expressed a 44.0-kDa isoform (N-16), whereas aorta and pancreas expressed a 53.3-kDa isoform (alphaES). Each of these isoforms were absent in tissue extracts prepared from RAGE(-/-) mice. Cell lines expressed a 70.0-kDa isoform, and a subset expressed a 30.0-kDa isoform (alphaES). Lung RAGE appeared to contain two N-linked glycans. Tissue and cell-line RAGE isoforms were completely insensitive to PNGase F digestion. Thus, numerous RAGE protein isoforms are detectable in tissues and cell lines. Canonical transmembrane and soluble RAGE appear to be expressed solely in lung (N-16/H-300). Non-pulmonary tissues and cell lines, regardless of the source tissue, both express distinct RAGE protein isoforms containing the N-terminal N-16 epitope or the alphaES RAGE epitope encoded by alternate exon 9, but lacking the H-300 epitope.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center