Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2009 May 27;131(20):7182-8. doi: 10.1021/ja901309z.

Cyclic pyrrole-imidazole polyamides targeted to the androgen response element.

Author information

  • 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.


Hairpin pyrrole-imidazole (Py-Im) polyamides are a class of cell-permeable DNA-binding small molecules that can disrupt transcription factor-DNA binding and regulate endogenous gene expression. The covalent linkage of antiparallel Py-Im ring pairs with an gamma-amino acid turn unit affords the classical hairpin Py-Im polyamide structure. Closing the hairpin with a second turn unit yields a cyclic polyamide, a lesser-studied architecture mainly attributable to synthetic inaccessibility. We have applied our methodology for solution-phase polyamide synthesis to cyclic polyamides with an improved high-yield cyclization step. Cyclic 8-ring Py-Im polyamides 1-3 target the DNA sequence 5'-WGWWCW-3', which corresponds to the androgen response element (ARE) bound by the androgen receptor transcription factor to modulate gene expression. We find that cyclic Py-Im polyamides 1-3 bind DNA with exceptionally high affinities and regulate the expression of AR target genes in cell culture studies, from which we infer that the cycle is cell permeable.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center