Send to

Choose Destination
Neuroscience. 2009 Apr 10;159(4):1422-9. doi: 10.1016/j.neuroscience.2009.01.066. Epub 2009 Feb 3.

Botulinum toxin type a (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropathy behaviors induced by infraorbital nerve constriction.

Author information

Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Erratum in

  • Neuroscience. 2009 Jul 7;161(3):950. Kamioka, H [added]; Yamashiro, T [added].


Many patients with trigeminal neuropathies suffer severe chronic pain which is inadequately alleviated with centrally-acting drugs. These drugs also possess severe side effects making compliance difficult. One strategy is to develop new treatments without central side effects by targeting peripheral sensory neurons, since sensory neuron excitability and neurotransmitter release increase in chronic pain states. Such treatments may include the highly purified botulinum toxin type A 150 kDa (BoNT/A) which reportedly blocks vesicular neurotransmitter release. We set out to determine if experimental trigeminal neuropathy induced by infraorbital nerve constriction (IoNC) in rats could alter neurotransmitter release from somata of trigeminal sensory neurons and if it could be attenuated by BoNT/A. Thus, we monitored the secretory activity of acutely dissociated trigeminal ganglion (TRG) neurons from naïve and IoNC rats by measuring the fluorescence intensity of the membrane-uptake marker (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide (FM4-64). FM4-64 staining showed that neurons possess a pool of recycled vesicles which could be released by high KCl (75 mM) application. BoNT/A pre-treatment of acutely dissociated TRG neurons from naïve rats significantly reduced the rate of FM4-64 dye release. Neurons isolated from TRG ipsilateral to IoNC exhibited significantly faster onset of FM4-64 release than neurons contralateral to IoNC (sham surgery). IoNC also produced long-lasting ipsilateral tactile allodynia, measured as large decreases of withdrawal thresholds to mechanical stimulation. Intradermal injection of BoNT/A in the area of infraorbital branch of the trigeminal nerve (IoN) innervation alleviated IoNC-induced mechanical allodynia and reduced the exaggerated FM4-64 release in TRG neurons from these rats. Our results suggest that BoNT/A decreases neuropathic pain behaviors by decreasing the exaggerated neurotransmitter release from TRG sensory neurons.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center