Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model

J Bone Joint Surg Br. 2009 May;91(5):691-9. doi: 10.1302/0301-620X.91B5.21544.

Abstract

The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p < 0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p > 0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage, Articular / cytology*
  • Cartilage, Articular / metabolism*
  • Cattle
  • Cell Count
  • Cell Survival / physiology*
  • Chondrocytes / metabolism
  • Chondrocytes / physiology*
  • Coculture Techniques
  • Models, Animal