Send to

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4581-7. doi: 10.1167/iovs.09-3563. Epub 2009 Apr 30.

Mucin-type O-glycans in tears of normal subjects and patients with non-Sjögren's dry eye.

Author information

  • 1Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.



O-linked carbohydrates (O-glycans) contribute to the hydrophilic character of mucins in mucosal tissues. This study was conducted to identify the repertoire of O-glycans in the tear film and the glycosyltransferases associated with their biosynthesis, in normal subjects and patients with non-Sjögren's dry eye.


Human tear fluid was collected from the inferior conjunctival fornix. O-glycans were released by hydrazinolysis, labeled with 2-aminobenzamide, and analyzed by fluorometric, high-performance liquid chromatography (HPLC) coupled with exoglycosidase digestions. O-glycan structures identified in tears were related to potential biosynthetic pathways in human conjunctival epithelium by using a glycogene microarray database. Lectin-binding analyses were performed with agglutinins from Arachis hypogaea, Maackia amurensis, and Sambucus nigra.


The O-glycan profile of human tears consisted primarily of core 1 (Gal beta 1-3GalNAc alpha 1-Ser/Thr)-based structures. Mono-sialyl O-glycans represented approximately 66% of the glycan pool, with alpha2-6-sialyl core 1 being the predominant O-glycan structure in human tears (48%). Four families of glycosyltransferases potentially related to the biosynthesis of these structures were identified in human conjunctiva. These included 13 polypeptide-GalNAc-transferases (GALNT), the core 1 beta-3-galactosyltransferase (T-synthase), three alpha2-6-sialyltransferases (ST6GalNAc), and two alpha2-3-sialyltransferases (ST3Gal). No significant differences in total amount of O-glycans were detected between tears of normal subjects and patients with dry eye, by HPLC and lectin blot. Likewise, no differences in glycosyltransferase expression were found by glycogene microarray.


This study identified the most common mucin-type O-glycans in human tears and their expected biosynthetic pathways in ocular surface epithelia. Patients with non-Sjögren's dry eye showed no alterations in composition and amount of O-glycans in the tear fluid.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center