Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2009;4(4):e5407. doi: 10.1371/journal.pone.0005407. Epub 2009 Apr 30.

Local control of excitation-contraction coupling in human embryonic stem cell-derived cardiomyocytes.

Author information

1
Department of Pathology, University of Washington, Seattle, Washington, United States of America.

Abstract

We investigated the mechanisms of excitation-contraction (EC) coupling in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and fetal ventricular myocytes (hFVMs) using patch-clamp electrophysiology and confocal microscopy. We tested the hypothesis that Ca(2+) influx via voltage-gated L-type Ca(2+) channels activates Ca(2+) release from the sarcoplasmic reticulum (SR) via a local control mechanism in hESC-CMs and hFVMs. Field-stimulated, whole-cell [Ca(2+)](i) transients in hESC-CMs required Ca(2+) entry through L-type Ca(2+) channels, as evidenced by the elimination of such transients by either removal of extracellular Ca(2+) or treatment with diltiazem, an L-type channel inhibitor. Ca(2+) release from the SR also contributes to the [Ca(2+)](i) transient in these cells, as evidenced by studies with drugs interfering with either SR Ca(2+) release (i.e. ryanodine and caffeine) or reuptake (i.e. thapsigargin and cyclopiazonic acid). As in adult ventricular myocytes, membrane depolarization evoked large L-type Ca(2+) currents (I(Ca)) and corresponding whole-cell [Ca(2+)](i) transients in hESC-CMs and hFVMs, and the amplitude of both I(Ca) and the [Ca(2+)](i) transients were finely graded by the magnitude of the depolarization. hESC-CMs exhibit a decreasing EC coupling gain with depolarization to more positive test potentials, "tail" [Ca(2+)](i) transients upon repolarization from extremely positive test potentials, and co-localized ryanodine and sarcolemmal L-type Ca(2+) channels, all findings that are consistent with the local control hypothesis. Finally, we recorded Ca(2+) sparks in hESC-CMs and hFVMs. Collectively, these data support a model in which tight, local control of SR Ca(2+) release by the I(Ca) during EC coupling develops early in human cardiomyocytes.

PMID:
19404384
PMCID:
PMC2671137
DOI:
10.1371/journal.pone.0005407
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center