Format

Send to

Choose Destination
IEEE Trans Image Process. 2009 Jun;18(6):1192-202. doi: 10.1109/TIP.2009.2017171. Epub 2009 Apr 28.

Self-similarity driven color demosaicking.

Author information

1
Université Paris Descartes, 75270 Paris cedex 06, France. toni.buades@math-info.univ-paris5.fr

Abstract

Demosaicking is the process by which from a matrix of colored pixels measuring only one color component per pixel, red, green, or blue, one can infer a whole color information at each pixel. This inference requires a deep understanding of the interaction between colors, and the involvement of image local geometry. Although quite successful in making such inferences with very small relative error, state-of-the-art demosaicking methods fail when the local geometry cannot be inferred from the neighboring pixels. In such a case, which occurs when thin structures or fine periodic patterns were present in the original, state-of-the-art methods can create disturbing artifacts, known as zipper effect, blur, and color spots. The aim of this paper is to show that these artifacts can be avoided by involving the image self-similarity to infer missing colors. Detailed experiments show that a satisfactory solution can be found, even for the most critical cases. Extensive comparisons with state-of-the-art algorithms will be performed on two different classic image databases.

PMID:
19403366
DOI:
10.1109/TIP.2009.2017171

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center