Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2009 Jul 23;114(4):915-24. doi: 10.1182/blood-2008-10-186239. Epub 2009 Apr 27.

Peripheral mural cell recruitment requires cell-autonomous heparan sulfate.

Author information

  • 1Vascular Biology Laboratory, London Research Institute-Cancer Research UK, 44 Lincoln's Inn Fields, London, United Kingdom.


Blood vessel maturation and stability require recruitment of mural cells (MCs) to the nascent vessel. Loss or detachment of MCs causes vascular dysfunction in diseases. N-sulfation of heparan sulfate (HS) is required for platelet-derived growth factor B (PDGF-B) retention and platelet-derived growth factor receptor-beta (PDGFR-beta) signaling during MC recruitment. To analyze the specific role of MC-derived HS in this process, we inactivated HS synthesis in MCs. MC-specific loss of HS causes embryonic lethality associated with vascular patterning defects, edema, and hemorrhages during late gestation. MC recruitment in the skin is impaired, correlating with defective PDGFR-beta and transforming growth factor-beta (TGF-beta)-SMAD signaling. Accumulation of rounded cells positive for MC markers close to the vessels indicates defective polarization and migration of local MC progenitors. In contrast, MC recruitment and signaling in the central nervous system (CNS) are unaffected by MC HS loss. Our results suggest that HS is selectively required in a cell-autonomous manner, acting in cis with PDGFR-beta and TGF-beta receptors during induction/polarization and migration of local progenitor cells to the nascent vessel. Once MCs are in contact with the vessel, as during CNS vascularization, endothelial HS appears sufficient to facilitate PDGFR-beta activation in trans.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center