Send to

Choose Destination
See comment in PubMed Commons below
J Anim Sci. 2009 Aug;87(8):2528-35. doi: 10.2527/jas.2009-1845. Epub 2009 Apr 24.

Developmental changes in the concentrations of glutamine and other amino acids in plasma and skeletal muscle of the Standardbred foal.

Author information

  • 1Department of Animal Sciences, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA.


Glutamine is concentrated within skeletal muscle, where it has been proposed to play a regulatory role in maintaining protein homeostasis. The work presented here addressed the hypothesis that glutamine would be the most abundant free alpha-AA in plasma and skeletal muscle in the foal during the first year of life. Glycine, however, was the most abundant free alpha-AA in plasma at birth and between 3 and 12 mo of age. The concentration of glutamine, the second most abundant AA at birth, increased through the first 7 d (P < 0.05) and then returned to values similar to those at birth. This resulted in glutamine being the most abundant free alpha-AA in plasma from 1 d through 1 mo of age. The most abundant free alpha-AA in skeletal muscle at birth was glutamine, but the concentration fell by more than 50% by d 15 and continued to decrease, reaching about one-third of the original values by 1 yr of age (P < 0.05). Glutamine synthetase was barely detectable in skeletal muscle at birth, but the abundance increased rapidly within 15 d of birth. The concentration of glycine, the second most abundant alpha AA in muscle at birth, decreased by about 40% by d 15 (P < 0.05) and then stabilized at this value throughout the year. In contrast, glutamate, alanine, and serine concentrations, the third, fourth, and fifth most abundant free alpha-AA in muscle at birth, respectively, increased to new stable concentrations between 3 and 6 mo of age (P < 0.05). This resulted in alanine being the most abundant free alpha-AA in skeletal muscle at 12 mo of age, followed by glutamate, glutamine, and glycine. The decrease in intramuscular glutamine content, particularly during the first 2 wk after birth, is not compatible with a regulatory role for glutamine in muscle protein synthesis because it occurred at the time of maximum growth in these animals. The findings that, at certain times of development, glutamine was not the most abundant free alpha-AA in the foal is novel and signifies that intramuscular glutamine may have functions specific to muscle type and mammalian species.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Science Societies
    Loading ...
    Support Center