Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Oct 25;266(30):19971-5.

Phosphorylation of caldesmon by p34cdc2 kinase. Identification of phosphorylation sites.

Author information

  • 1Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.


It has recently been shown that caldesmon from non-muscle (Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Nature 349, 169-172) and smooth muscle cells (Mak, A. S., Watson, M. H., Litwin, C. M. E., and Wang, J. H. (1991) J. Biol. Chem. 266, 6678-6681) can be phosphorylated in vitro by p34cdc2 kinase resulting in the inhibition of caldesmon binding to F-actin and Ca(2+)-calmodulin. In this study, we have identified five phosphorylation sites in smooth muscle caldesmon at Ser582, Ser667, Thr673, Thr696, and Ser702. All the sites bear some resemblance to the S(T)-P-X-X motif recognized by p34cdc2. The preferred site of phosphorylation at Thr673 accounts for about 40% of the total phosphorylation. Four of the sites occur in two pairs of closely spaced sites, Ser667/Thr673 and Thr696/Ser702; phosphorylation of one site in each pair inhibits strongly the phosphorylation of the second site in the same pair, presumably due to the close proximity of the two sites. Similar negative cooperativity in phosphorylation of Ser667 and Thr673 was observed using a 22-residue synthetic peptide containing the two sites. Phosphorylation of Ser667/Thr673 and Thr696/Ser702 account for about 90% of the total level of phosphorylation and these sites are located within the 10-kDa CNBr fragment at the COOH-terminal end of caldesmon known to bind actin and Ca(2+)-calmodulin.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center