Format

Send to

Choose Destination
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):596-600. doi: 10.1197/jamia.M3096. Epub 2009 Apr 23.

A text mining approach to the prediction of disease status from clinical discharge summaries.

Author information

1
School of Computer Science, University of Manchester, Manchester, UK.

Abstract

OBJECTIVE The authors present a system developed for the Challenge in Natural Language Processing for Clinical Data-the i2b2 obesity challenge, whose aim was to automatically identify the status of obesity and 15 related co-morbidities in patients using their clinical discharge summaries. The challenge consisted of two tasks, textual and intuitive. The textual task was to identify explicit references to the diseases, whereas the intuitive task focused on the prediction of the disease status when the evidence was not explicitly asserted. DESIGN The authors assembled a set of resources to lexically and semantically profile the diseases and their associated symptoms, treatments, etc. These features were explored in a hybrid text mining approach, which combined dictionary look-up, rule-based, and machine-learning methods. MEASUREMENTS The methods were applied on a set of 507 previously unseen discharge summaries, and the predictions were evaluated against a manually prepared gold standard. The overall ranking of the participating teams was primarily based on the macro-averaged F-measure. RESULTS The implemented method achieved the macro-averaged F-measure of 81% for the textual task (which was the highest achieved in the challenge) and 63% for the intuitive task (ranked 7(th) out of 28 teams-the highest was 66%). The micro-averaged F-measure showed an average accuracy of 97% for textual and 96% for intuitive annotations. CONCLUSIONS The performance achieved was in line with the agreement between human annotators, indicating the potential of text mining for accurate and efficient prediction of disease statuses from clinical discharge summaries.

PMID:
19390098
PMCID:
PMC2705266
DOI:
10.1197/jamia.M3096
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center