Send to

Choose Destination
See comment in PubMed Commons below
Alcohol Clin Exp Res. 2009 Jul;33(7):1158-68. doi: 10.1111/j.1530-0277.2009.00939.x. Epub 2009 Apr 9.

Facilitation of myocardial PI3K/Akt/nNOS signaling contributes to ethanol-evoked hypotension in female rats.

Author information

Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina, USA.



The mechanism by which ethanol reduces cardiac output (CO) and blood pressure (BP) in female rats remains unclear. We tested the hypothesis that enhancement of myocardial phosphatidylinositol 3-kinase (PI3K)/Akt signaling and related neuronal nitric oxide synthase (nNOS) and/or endothelial nitric oxide synthase (eNOS) activity constitutes a cellular mechanism for the hemodynamic effects of ethanol.


We measured the level of phosphorylated eNOS (p-eNOS) and p-nNOS in the myocardium of ethanol (1 g/kg intragastric, i.g.) treated female rats along with hemodynamic responses [BP, CO, stroke volume, (SV), total peripheral resistance, (TPR)], and myocardial nitrate/nitrite levels (NOx) levels. Further, we investigated the effect of selective pharmacological inhibition of nNOS with N(omega)-propyl-l-arginine (NPLA) or eNOS with N(5)-(1-iminoethyl)-l-ornithine (l-NIO) on cellular, hemodynamic, and biochemical effects of ethanol. The effects of PI3K inhibition by wortmannin on the cardiovascular actions of ethanol and myocardial Akt phosphorylation were also investigated.


The hemodynamic effects of ethanol (reductions in BP, CO, and SV) were associated with significant increases in myocardial NOx and myocardial p-nNOS and p-Akt expressions while myocardial p-eNOS remained unchanged. Prior nNOS inhibition by NPLA (2.5 or 12.5 microg/kg) attenuated hemodynamic effects of ethanol and abrogated associated increases in myocardial NOx and cardiac p-nNOS contents. The hemodynamic effects of ethanol and increases in myocardial p-Akt phosphorylation were reduced by wortmannin (15 microg/kg). On the other hand, although eNOS inhibition by l-NIO (4 or 20 mg/kg) in a dose-dependent manner attenuated ethanol-evoked hypotension, the concomitant reductions in CO and SV remained unaltered. Also, selective eNOS inhibition uncovered dramatic increases in TPR in response to ethanol, which appeared to have offset the reduction in CO. Neither NPLA nor l-NIO altered plasma ethanol levels.


These findings implicate the myocardial PI3K/Akt/nNOS signaling in the reductions in BP and CO produced by ethanol in female rats.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center