Send to

Choose Destination
Biophys J. 2009 Apr 22;96(8):3281-94. doi: 10.1016/j.bpj.2009.01.016.

Time course and strain dependence of ADP release during contraction of permeabilized skeletal muscle fibers.

Author information

Imperial College London, Molecular Medicine Section, National Heart and Lung Institute, London, United Kingdom.


A phosphorylated, single cysteine mutant of nucleoside diphosphate kinase, labeled with N-[2-(iodoacetamido)ethyl]-7-diethylaminocoumarin-3-carboxamide (P approximately NDPK-IDCC), was used as a fluorescence probe for time-resolved measurement of changes in [MgADP] during contraction of single permeabilized rabbit psoas fibers. The dephosphorylation of the phosphorylated protein by MgADP occurs within the lattice environment of permeabilized fibers with a second-order rate constant at 12 degrees C of 10(5) M(-1) s(-1). This dephosphorylation is accompanied by a change in coumarin fluorescence. We report the time course of P approximately NDPK-IDCC dephosphorylation during the period of active isometric force redevelopment after quick release of fiber strain at pCa(2+) of 4.5. After a rapid length decrease of 0.5% was applied to the fiber, the extra NDPK-IDCC produced during force recovery, above the value during the approximately steady state of isometric contraction, was 2.7 +/- 0.6 microM and 4.7 +/- 1.5 microM at 12 and 20 degrees C, respectively. The rates of P approximately NDPK-IDCC dephosphorylation during force recovery were 28 and 50 s(-1) at 12 and 20 degrees C, respectively. The time courses of isometric force and P approximately NDPK-IDCC dephosphorylation were simulated using a seven-state reaction scheme. Relative isometric force was modeled by changes in the occupancy of strongly bound A.M.ADP.P(i) and A.M.ADP states. A strain-sensitive A.M.ADP isomerization step was rate-limiting (3-6 s(-1)) in the cross-bridge turnover during isometric contraction. At 12 degrees C, the A.M.ADP.P(i) and the pre- and postisomerization A.M.ADP states comprised 56%, 38%, and 7% of the isometric force-bearing AM states, respectively. At 20 degrees C, the force-bearing A.M.ADP.P(i) state was a lower proportion of the total force-bearing states (37%), whereas the proportion of postisomerization A.M.ADP states was higher (19%). The simulations suggested that release of cross-bridge strain caused rapid depopulation of the preisomerization A.M.ADP state and transient accumulation of MgADP in the postisomerization A.M.ADP state. Hence, the strain-sensitive isomerization of A.M.ADP seems to explain the rate of change of P approximately NDPK-IDCC dephosphorylation during force recovery. The temperature-dependent isometric distribution of myosin states is consistent with the previous observation of a small decrease in amplitude of the P(i) transient during force recovery at 20 degrees C and the current observation of an increase in amplitude of the ADP-sensitive NDPK-IDCC transient.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center