Send to

Choose Destination
Neuron. 2009 Apr 16;62(1):53-71. doi: 10.1016/j.neuron.2009.01.034.

KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner.

Author information

Neurobiology Curriculum, Neuroscience Center, Department of Pharmacology, University of North Carolina, Chapel Hill, 115 Mason Farm Road, Chapel Hill, NC 27599-7250, USA.


The molecular mechanisms controlling the termination of cortical interneuron migration are unknown. Here, we demonstrate that, prior to synaptogenesis, migrating interneurons change their responsiveness to ambient GABA from a motogenic to a stop signal. We found that, during migration into the cortex, ambient GABA and glutamate initially stimulate the motility of interneurons through both GABA(A) and AMPA/NMDA receptor activation. Once in the cortex, upregulation of the potassium-chloride cotransporter KCC2 is both necessary and sufficient to reduce interneuron motility through its ability to reduce membrane potential upon GABA(A) receptor activation, which decreases the frequency of spontaneous intracellular calcium transients initiated by L-type voltage-sensitive calcium channel (VSCC) activation. Our results suggest a mechanism whereby migrating interneurons determine the relative density of surrounding interneurons and principal cells through their ability to sense the combined extracellular levels of ambient glutamate and GABA once GABA(A) receptor activation becomes hyperpolarizing.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center