Format

Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2009 Apr 20;48(8):3420-37. doi: 10.1021/ic802050j.

Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets.

Author information

  • 1Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan. miyasaka@agnus.chem.tohoku.ac.jp

Abstract

Slow relaxation of the magnetization (i.e., "magnet-like" behavior) in materials composed of magnetically isolated chains was observed for the first time in 2001. This type of behavior was predicted in the 1960s by Glauber in a chain of ferromagnetically coupled Ising spins (the so-called Glauber dynamics). In 2002, this new class of nanomagnets was named single-chain magnets (SCMs) by analogy to single-molecule magnets that are isolated molecules displaying related superparamagnetic properties. A long-range order occurs only at T = 0 K in any pure one-dimensional (1D) system, and thus such systems remain in their paramagnetic state at any finite temperature. Nevertheless, the combined action of large uniaxial anisotropy and intrachain magnetic interactions between high-spin magnetic units of the 1D arrangement promotes long relaxation times for the magnetization reversal with decreasing temperature, and finally at significantly low temperatures, the material can behave as a magnet. In this Forum Article, we summarize simple theoretical approaches used for understanding typical SCM behavior and some rational synthetic strategies to obtain SCM materials together with representative examples of SCMs previously reported.

PMID:
19361243
DOI:
10.1021/ic802050j
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center