Format

Send to

Choose Destination
See comment in PubMed Commons below
Stroke. 2009 Jun;40(6):2165-72. doi: 10.1161/STROKEAHA.108.540864. Epub 2009 Apr 9.

Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia.

Author information

1
Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. hongyuan@med.unc.edu

Abstract

BACKGROUND AND PURPOSE:

A noninvasive MRI method to measure cerebral oxygen metabolism has the potential to assess tissue viability during cerebral ischemia. The purposes of this study were to validate MR oxygenation measurements across a wide range of global cerebral oxygenation and to examine the spatiotemporal evolution of oxygen metabolism during focal middle cerebral artery occlusion in rats.

METHODS:

A group of rats (n=28) under normal, hyperoxic hypercapnia and hypoxia were studied to compare MR-measured cerebral oxygen saturation (O(2)Sat(MRv)) with blood gas oximetry measurements in the jugular vein (O(2)Sat(JV)) and superior sagittal sinus (O(2)Sat(SSS)). In a separate group of rats (n=31), MR-measured cerebral oxygen metabolic index (MR_COMI) was acquired at multiple time points during middle cerebral artery occlusion. Histogram analysis was performed on the normalized MR_COMI (rMR_COMI) to examine evolution of oxygen metabolism during acute ischemia.

RESULTS:

Highly linear relationships were obtained between O(2)Sat(MRv) and O(2)Sat(JV)/O(2)Sat(SSS) in rats under global cerebral oxygenation alterations. In the focal ischemia study, rMR_COMI values were significantly lower within the areas of eventual infarction than other regions. Moreover, the rMR_COMI values within the ischemic territory decreased with time, concomitant with an increase in the number of voxels with severely impaired oxygen metabolism.

CONCLUSIONS:

Accurate estimates of O(2)Sat(MRv) can be obtained across a broad and physiologically relevant range of cerebral oxygenation. Furthermore, this method demonstrates a dynamic alteration of cerebral oxygen metabolism during acute ischemia in rats.

PMID:
19359642
PMCID:
PMC2702659
DOI:
10.1161/STROKEAHA.108.540864
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center