Send to

Choose Destination
Free Radic Biol Med. 2009 May 1;46(9):1267-74.

Transcriptional and posttranslational regulation of clusterin by the two main cellular proteolytic pathways.

Author information

National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, 48 Vas. Constantinou Avenue, Athens, Greece.


Clusterin/apolipoprotein J (CLU) is a secreted glycoprotein associated with many severe physiological disturbances that represent states of increased oxidative stress, such as aging, cancer, atherosclerosis, diabetes, and renal and neurodegenerative diseases. The aim of our work was to examine the effect of proteasome and lysosome inhibition on CLU expression and to determine whether those proteolytic pathways are implicated in CLU gene regulation and protein degradation. To this end we used two different model systems, namely the U-2 OS osteosarcoma cell line and the WI38 primary human embryonic lung fibroblasts. We report that proteasome inhibition promotes both heat-shock factor 1 (HSF-1)-dependent CLU gene expression induction and protein accumulation due to reduced degradation. In contrast, lysosome inhibition results in elevated levels of CLU protein but does not affect the CLU mRNA levels. We also provide direct evidence that both the intracellular precursor, psCLU, and the mature secreted, sCLU, isoforms constitute proteolytic substrates of the proteasome and the lysosome. Overall our findings indicate that CLU overexpression after proteasome inhibition relates to both positive gene transcriptional regulation by HSF-1 and posttranslational protein accumulation due to reduced proteasomal and lysosomal degradation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center