Format

Send to

Choose Destination
Int J Oral Maxillofac Implants. 2009 Jan-Feb;24(1):31-7.

The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs.

Author information

1
Department of Prosthodontics, School of Dental Medicine, Bavarian Julius-Maximilians-University, Würzburg, Germany. dw@max-17.de

Abstract

PURPOSE:

This dog study sought to evaluate guided bone regeneration (GBR) in peri-implant defects following implantation of beta-tricalcium phosphate (beta-TCP) with and without osteoinductive recombinant human growth/differentiation factor-5 (rhGDF-5).

MATERIALS AND METHODS:

In five beagle dogs, all mandibular premolars and the first molar were extracted. After 2 months, six buccolingual critical-size defects were created, and an implant was inserted into the center of each defect. One defect was filled with beta-TCP coated with rhGDF-5 (600 microg/g beta-TCP) and covered with a titanium-reinforced e-PTFE membrane (GDF group). A second defect received the same treatment, but pure uncoated beta-TCP was used (TCP group). A third defect was filled with beta-TCP mixed with autograft and not protected with a membrane (control group). The remaining three defects were filled with other biomaterials. After 2 months, total new bone area, regenerated bone height, and residual amount of beta-TCP were determined histomorphometrically.

RESULTS:

All implants osseointegrated. One membrane in each group became exposed. Mean new bone area for GDF, TCP, and control sites was 43.9 +/- 18.7 mm2, 32.3 +/- 16.1 mm2, and 13.1 +/- 4.0 mm2, respectively, with a significant difference between GDF and control groups. Mean regenerated bone height was 103.8 +/- 29.7%, 75.4 +/- 36.6%, and 67.2 +/- 19.1% for the GDF, TCP, and control groups, respectively. Mean residual matrix volumes were 25.9 +/- 13.6%, 30.0 +/- 13.0%, and 13.4 +/- 6.5%, respectively. Membrane protection of peri-implant defects filled with beta-TCP resulted in a stronger effect on bone regeneration, although this was not statistically significant. The most pronounced regenerative results were achieved in rhGDF-5/beta-TCP filled membrane-protected defects.

CONCLUSION:

Delivery of rhGDF-5 on beta-TCP might have the potential to enhance the results of GBR in peri-implant defects.

PMID:
19344022
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center