Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2009 Apr 3;4(4):359-69. doi: 10.1016/j.stem.2009.03.001.

Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells.

Author information

1
Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA. cware@u.washington.edu

Abstract

Recent evidence indicates that mouse and human embryonic stem cells (ESCs) are fixed at different developmental stages, with the former positioned earlier. We show that a narrow concentration of the naturally occurring short-chain fatty acid, sodium butyrate, supports the extensive self-renewal of mouse and human ESCs, while promoting their convergence toward an intermediate stem cell state. In response to butyrate, human ESCs regress to an earlier developmental stage characterized by a gene expression profile resembling that of mouse ESCs, preventing precocious Xist expression while retaining the ability to form complex teratomas in vivo. Other histone deacetylase inhibitors (HDACi) also support human ESC self-renewal. Our results indicate that HDACi can promote ESC self-renewal across species, and demonstrate that ESCs can toggle between alternative states in response to environmental factors.

PMID:
19341625
PMCID:
PMC2719860
DOI:
10.1016/j.stem.2009.03.001
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center