Send to

Choose Destination
J Cell Physiol. 2009 Jul;220(1):267-75. doi: 10.1002/jcp.21761.

Functional alpha1- and beta2-adrenergic receptors in human osteoblasts.

Author information

Department of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.


Central (hypothalamic) control of bone mass is proposed to be mediated through beta2-adrenergic receptors (beta2-ARs). While investigations in mouse bone cells suggest that epinephrine enhances both RANKL and OPG mRNA via both beta-ARs and alpha-ARs, whether alpha-ARs are expressed in human bone cells is controversial. The current study investigated the expression of alpha1-AR and beta2-AR mRNA and protein and the functional role of adrenergic stimulation in human osteoblasts (HOBs). Expression of alpha1B- and beta2-ARs was examined by RT-PCR, immunofluorescence microscopy and Western blot (for alpha1B-ARs). Proliferation in HOBs was assessed by (3)H-thymidine incorporation and expression of RANKL and OPG was determined by quantitative RT-PCR. RNA message for alpha1B- and beta2-ARs was expressed in HOBs and MG63 human osteosarcoma cells. alpha1B- and beta2-AR immunofluorescent localization in HOBs was shown for the first time by deconvolution microscopy. alpha1B-AR protein was identified in HOBs by Western blot. Both alpha1-agonists and propranolol (beta-blocker) increased HOB replication but fenoterol, a beta2-agonist, inhibited it. Fenoterol nearly doubled RANKL mRNA and this was inhibited by propranolol. The alpha1-agonist cirazoline increased OPG mRNA and this increase was abolished by siRNA knockdown of alpha1B-ARs in HOBs. These data indicate that both alpha1-ARs and beta2-ARs are present and functional in HOBs. In addition to beta2-ARs, alpha1-ARs in human bone cells may play a role in modulation of bone turnover by the sympathetic nervous system.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center