Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 May 29;284(22):14734-43. doi: 10.1074/jbc.M808664200. Epub 2009 Mar 30.

Regulation of Rac1 by simvastatin in endothelial cells: differential roles of AMP-activated protein kinase and calmodulin-dependent kinase kinase-beta.

Author information

Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.


These studies explore the connections between simvastatin, Rac1, and AMP-activated protein kinase (AMPK) pathways in cultured vascular endothelial cells and in arterial preparations isolated from statin-treated mice. In addition to their prominent effects on lipoprotein metabolism, statins can regulate the small GTPase Rac1, and may also affect the phosphorylation of the ubiquitous AMPK. We explored pathways of statin-modulated Rac1 and AMPK activation both in arterial preparations from statin-treated mice as well as in cultured endothelial cells. We treated adult mice with simvastatin daily for 2 weeks and then harvested and analyzed arterial preparations. Simvastatin treatment of mice led to a significant increase in AMPK and LKB1 phosphorylation and to a decrease in protein kinase A activity relative to control animals, associated with a marked increase in Rac1 activation. Exposure of bovine aortic endothelial cells to simvastatin for 24 h strikingly increased GTP-bound Rac1 and led to increased phosphorylation of AMPK as well as the AMPK kinase LKB1. These responses to simvastatin were blocked by mevalonate or geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. Small interfering RNA (siRNA)-mediated knockdown of AMPK abrogated simvastatin-induced Rac1 activation and LKB1 phosphorylation. Importantly, siRNA-mediated knockdown of the key AMPK kinase, calcium/calmodulin-dependent protein kinase kinase beta, completely blocked simvastatin-induced endothelial cell migration and also abrogated statin-promoted phosphorylation of AMPK and LKB1, as did pharmacological inhibition with the specific calcium/calmodulin-dependent protein kinase beta inhibitor STO-609. Moreover, siRNA-mediated knockdown of Rac1 completely blocked simvastatin-induced LKB1 phosphorylation, but without affecting simvastatin-induced AMPK phosphorylation. These findings establish a key role for simvastatin in activation of a novel Rac1-dependent signaling pathway in the vascular wall.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center