Send to

Choose Destination
Biophys J. 1991 Sep;60(3):568-76.

Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water.

Author information

Department of Physiology and Biophysics, University of California, Irvine 92717.


We described in two previous papers a method for the joint refinement of the structure of fluid bilayers using neutron and x-ray diffraction data (Wiener, M. C., and S. H. White 1991a, b. Biophys. J. 59: 162-173 and 174-185). An essential part of the method is the appropriate scaling of the diffraction data. Here we describe the scaling of the neutron data and the determination of the transbilayer distribution of double bonds in liquid-crystalline (L alpha phase) phospholipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The distribution was determined by neutron diffraction of oriented multilayers (66% RH) of DOPC specifically deuterated at the 9- and 10-position of both acyl chains. The double-bond distribution is described accurately by a pair of Gaussian functions each located at a position Zcc = 7.88 +/- 0.09 A from the bilayer center with 1/e-halfwidths of Acc = 4.29 +/- 0.16 A. Previously, we determined the transbilayer distribution of bromine atoms in a specifically halogenated lipid, 1-oleoyl-2-9,10-dibromostearoyl-sn-glycero-3-phosphocholine (OBPC), and showed it to be an isomorphous replacement for DOPC (Wiener, M. C., and S. H. White, 1991c. Biochemistry. In press). A comparison of the double-bond and bromine profiles indicates that the positions of the centers of the deuterated double bond and the brominated methylene Gaussian distributions are equal within experimental error and that each label undergoes similar average thermal motions with respect to the bilayer normal. The observation that the average position of a label on both acyl chains (the deuterated double bonds) is similar to the average position of a label on the 2-chain alone (the brominated methylenes) indicates that the maximum separation along the bilayer normal between the double bonds of the acyl chains is 1 A or less. The fully-resolved transbilayer water distribution, previously determined at lower resolution (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437), was obtained from the analysis of neutron diffraction data of DOPC hydrated with a D20/H20 mixture. The water distribution is described accurately by a pair of Gaussian functions each located at a position Zw = 22.51 +/- 0.77 A from the bilayer center with 1/e-half widths of Aw = 4.63 +/- 0.48A. We present the relative absolute neutron and x-ray structure factors of DOPC at 66% RH that will be used to solve the complete structure of DOPC which will be presented in a later paper of this series.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center