Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Plant Biol. 2009 Mar 23;9:33. doi: 10.1186/1471-2229-9-33.

Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed.

Author information

1
Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523-1173, USA. akbroz@lamar.colostate.edu

Abstract

BACKGROUND:

Ecological, evolutionary and physiological studies have thus far provided an incomplete picture of why some plants become invasive; therefore we used genomic resources to complement and advance this field. In order to gain insight into the invasive mechanism of Centaurea stoebe we compared plants of three geo-cytotypes, native Eurasian diploids, native Eurasian tetraploids and introduced North American tetraploids, grown in a common greenhouse environment. We monitored plant performance characteristics and life cycle habits and characterized the expression of genes related to constitutive defense and genome stability using quantitative PCR.

RESULTS:

Plant origin and ploidy were found to have a significant effect on both life cycle characteristics and gene expression, highlighting the importance of comparing appropriate taxonomic groups in studies of native and introduced plant species. We found that introduced populations of C. stoebe exhibit reduced expression of transcripts related to constitutive defense relative to their native tetraploid counterparts, as might be expected based on ideas of enemy release and rapid evolution. Measurements of several vegetative traits were similar for all geo-cytotypes; however, fecundity of tetraploids was significantly greater than diploids, due in part to their polycarpic nature. A simulation of seed production over time predicts that introduced tetraploids have the highest fecundity of the three geo-cytotypes.

CONCLUSION:

Our results suggest that characterizing gene expression in an invasive species using populations from both its native and introduced range can provide insight into the biology of plant invasion that can complement traditional measurements of plant performance. In addition, these results highlight the importance of using appropriate taxonomic units in ecological genomics investigations.

PMID:
19309502
PMCID:
PMC2670832
DOI:
10.1186/1471-2229-9-33
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center