Send to

Choose Destination
J Dairy Sci. 2009 Apr;92(4):1423-9. doi: 10.3168/jds.2008-1384.

Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro.

Author information

Department of Animal Science, Unit-4040, university of connecticut, Storrs 06269, USA.


The objective of this study was to investigate the antimicrobial effect of plant-derived antimicrobials including trans-cinnamaldehyde (TC), eugenol, carvacrol, and thymol on major bacterial mastitis pathogens in milk. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the aforementioned compounds on Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli were determined. In addition, the bactericidal kinetics of TC on the aforementioned pathogens and the persistence of the antimicrobial activity of TC in milk over a period of 2 wk were investigated. All 4 plant-derived molecules exhibited antimicrobial activity against the 5 mastitis pathogens tested, but TC was most effective in killing the bacteria. The MIC and MBC of TC on Staph. aureus, E. coli, and Strep. uberis were 0.1 and 0.45%, respectively, whereas that on Strep. agalactiae and Strep. dysgalactiae were 0.05 and 0.4%, respectively. The MIC and MBC of the other 3 molecules ranged from 0.4 to 0.8% and 0.8 to 1.5%, respectively. In time-kill assays, TC at the MBC reduced the bacterial pathogens in milk by 4.0 to 5.0 log(10) cfu/mL and to undetectable levels within 12 and 24 h, respectively. The antimicrobial effect of TC persisted for the duration of the experiment (14 d) without any loss of activity. Results of this study suggest that TC has the potential to be evaluated as an alternative or adjunct to antibiotics as intramammary infusion to treat bovine mastitis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center