Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Cell Biol. 2009 Jun;21(3):377-86. doi: 10.1016/j.ceb.2009.02.006. Epub 2009 Mar 21.

Decrypting the genome's alternative messages.

Author information

  • 1Centre de Regulació Genómica, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain.

Abstract

Alternative splicing of messenger RNA (mRNA) precursors affects the majority of human genes, has a considerable impact on eukaryotic gene function and offers distinct opportunities for regulation. Alterations in alternative splicing can cause or modify the progression of a significant number of pathologies. Recent high-throughput technologies have uncovered a wealth of transcript diversity generated by alternative splicing, as well as examples for how this diversity can be established and become misregulated. A variety of mechanisms modulate splice site choice coordinately with other cellular processes, from transcription and mRNA editing or decay to miRNA-based regulation and telomerase function. Alternative splicing studies can contribute to our understanding of multiple biological processes, including genetic diversity, speciation, cell/stem cell differentiation, nervous system function, neuromuscular disorders and tumour progression.

PMID:
19307111
DOI:
10.1016/j.ceb.2009.02.006
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center